• ### Building Bridges

Section 3.1... [Notes: 1) Basic terminology, 2) "End Behavior" of Polynomial Graphs, 3) Sketching Polynomial graphs without a calculator(by sketching zeros, end behavior, and using "mulitplicity" of zeros), 4) Identifying local maxima and minimas of polynomial graphs(and absolute maximum/minimum)][Assignment: pg 262 non-calculator exercises...#1,5-10all,13,17,25,35,37,43,45...AND Calculator Permitted exercises...#47-61odd,77,79]

Section 3.2a... [Notes: Long Division...see notation and extra examples (1 and 2) on pgs 266/267][Assignment:  pg 270 #1-21odd]

Section 3.2b... [Notes: 1) Synthetic Division of polynomials (for #25-33),  2) Remainder Theorem (for #37-49), 3) Factor Theorem (for #51,53), 4) Find all zeros of a polynimial given one zero (for #55), Find a Polynomial given the zeros (for #57-65)][Book Notes: pg 269 see Ex 4,5,6][Assignment: pg 270 #25-45EOO AND #51-65ODD]

Section 3.3...
[Notes: Video Notes For Rational Zeros Theorem AND Using graphing calculator and synthetic division to find initial rational zero(s), then find the remaining zeros with quadratic formula (or factoring)][Assignment: pg 279 #7-15odd (use Rational Zeros Theorem on 11-15odd) and #41-57EOO, 73,77,85,89,94,95]

Section 3.4... [Notes on pgs 285-289(see all examples on those pages)][Assignment3.4 Practice WS]

Section 3.5a...
[Notes: Concepts are similar to those found in the notes from 3.3, but now some zeros will be "complex" zeros(imaginary)...Notes for 3.5][Assignment: pg 298 Non-calculator problems(solve algebraically) are #1-29EOO,41,59,61 AND Calculator permitted problems are #45,49,53,57...Use calculator for "hybrid solving"...find one zero on the graph...proceed to factor the polynomial with that zero...repeat until the quotient is a quadratic...then solve the quadratic by factoring or quadratic formula)]]

Section 3.5b...[Notes: Find a Polynomial given the zeros(Also see example 6 on pg 296)][Assignment: pg 298 #33-39odd, 43,47(hybrid okay on 47)]

Section 3.6... [NOTES: Hand written summary of notes,  1) Vertical Asymptotes(and "gaps" in the graph...see 9:22), 2) Horizontal Asymptotes, 3) Slant(Oblique) Asymptotes,  4) Finding x and y intercepts algebraically, Examples of how to Graph Rational functions: Ex1Ex2Ex3][Assignment: pg 313 #5-23odd, #33,39,45,51,57,63...please use the directions on the worksheet provided in class as a guide for these problems]

Khan Academy related to chapter 3: