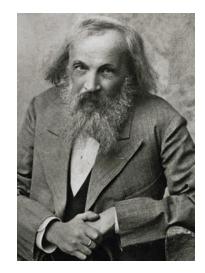

CHAPTER 6 NOTES: The Periodic Table


<u>NOTES: 6.1-6.2</u> The Periodic Table – Organizing the Elements

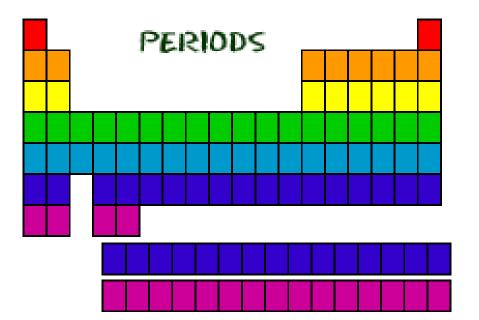
PERIODIC TABLE:

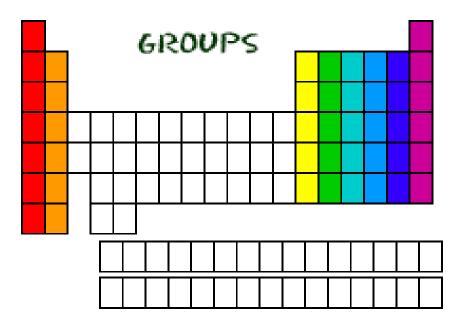
• <u>Dmitri Mendeleev – mid</u> <u>1800's</u>

-proposed a table for 70 elements based on <u>increasing</u> mass and similar properties

• <u>Henry Moseley – 1913</u>

-determined the atomic number of elements and arranged the table in order of <u>increasing</u> <u>atomic number</u>




Periodic Table

• **Periodicity:** (a.k.a. "**PERIODIC LAW**")

-<u>regular variations (or patterns) of properties</u> with increasing atomic weight; both chemical and physical properties vary in a "periodic" way (<u>repeating pattern</u>).

- **Group:** vertical column of elements ("family")
- **Period:** horizontal row of elements

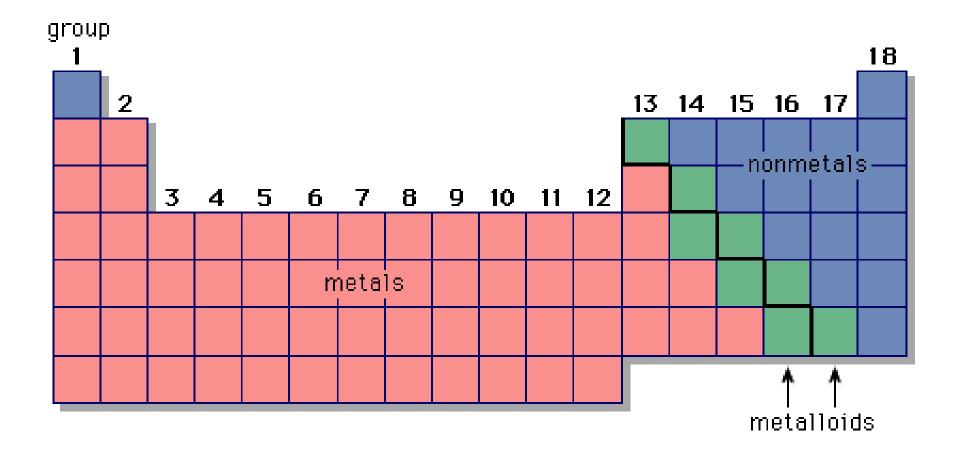
Periodic Groups and Trends

1 2	IA 1 H 3 Li	IIA 4 Be]	•		rio E		_			Э		IIIA 5 B	1VA 6 C	VA 7 N	VIA 8 0	VIIA 9 F	0 2 He 10 Ne		
3	11 Na	12 Mg	ШВ	IVB	٧B	ΥIB	VIIB		— VII -		IB	IB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar		
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr		
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe		
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn		
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 106	107 107	108 1 0 8	109 1 0 9	110 110										
	antha eries	nide	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 F Đ	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu				
	+ Actinide Series		90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr				
Legend - click to find out more																				
Н	H - gas					Li - solid						Br - liquid						Tc - synthetic		
	Non-Metals					Transition Metals						Rare Earth Metals					Halogens			
	A	lkali N	detals	6		AI	kali E	arth N	letals		Other Metals					Inert Elements				

Groupings to know on the Periodic Table

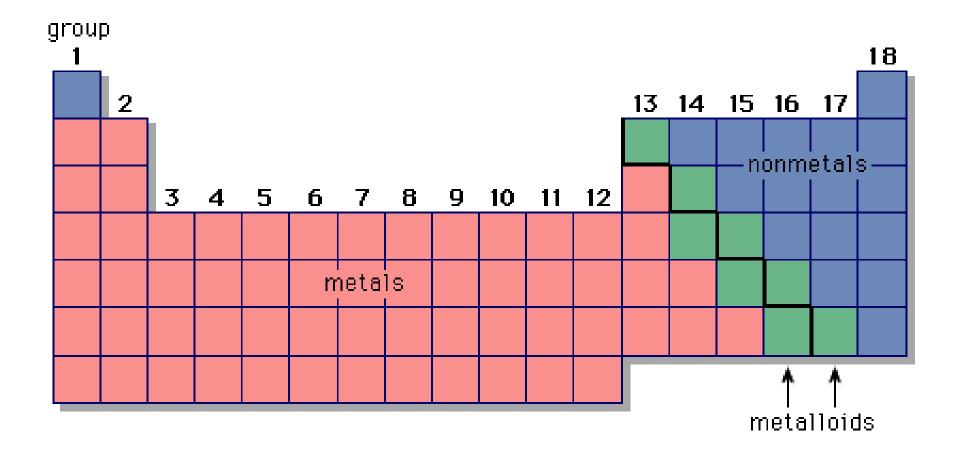
- Representative Elements: "Group A" elements; columns 1A-8A; they include:
 - -metals
 - -<u>nonmetals</u> -metalloids

Periodic Table IIIA IVA VA VIA VIIA of Elements Be s Mg Na Si CL В — IB IB 20 Ca Cr | Mn | Fe Co Ni Cu Zn Ga Ge As Se Br Sr Nb Mo Rb Zr Ru. Rh. Cd In Sn Sb Åα Re Os Pb La Hf Та TL Bi Ва lr. Pt Åυ. Po 106 Ra


METALS:

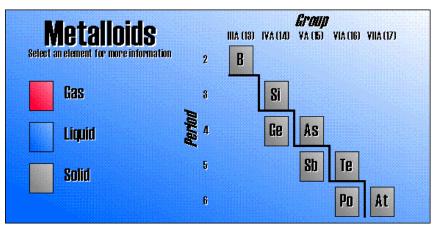
Characteristics:

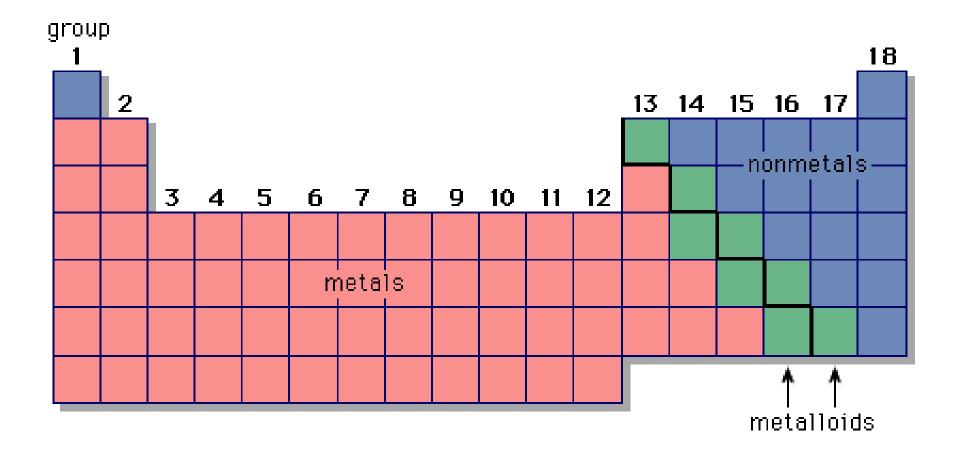
- <u>high electrical conductivity</u>
- high luster
- ductile & malleable
- on the left side of the periodic table (except hydrogen)



NONMETALS:

Characteristics:


- in the upper-right corner of the periodic table
- <u>nonlustrous</u>
- poor conductors of electricity
- some (O, Cl) are gases at room temp.
- others (S) are brittle solids



METALLOIDS:

Characteristics:

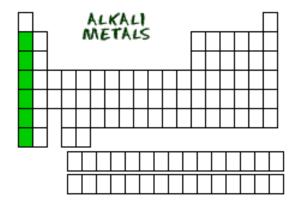
- <u>on the stair-step line</u> that divides the metals from the nonmetals
- exhibit properties that are intermediate between those of metals and nonmetals
- important metalloids: silicon, germanium

PERIODIC GROUPS

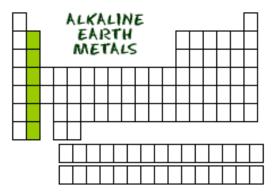
- alkali metals
- alkaline earth metals
- transition metals
- Ianthanides
- actinides
- halogens
- noble gases

"inner" transition metals

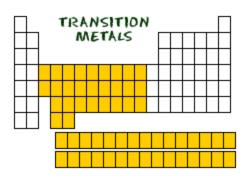
THE METALS!!

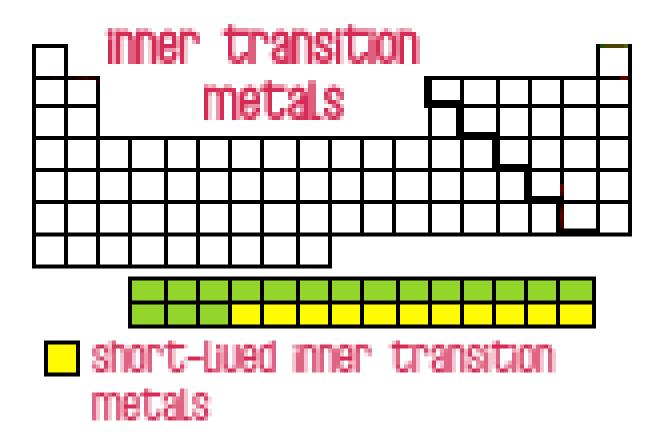


Alkali Metals


- Group 1 on periodic table
- <u>Very reactive</u>
- Soft solids
- Readily <u>combine with halogens</u>
- Tendency to lose one electron
- examples: sodium, potassium, cesium

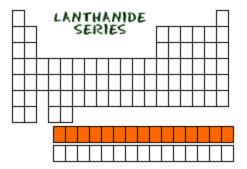
Alkaline Earth Metals


- <u>Group 2</u> on periodic table
- Abundant metals in the earth
- Not as reactive as alkali metals
- examples: magnesium, strontium

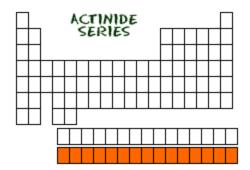


Transition Metals

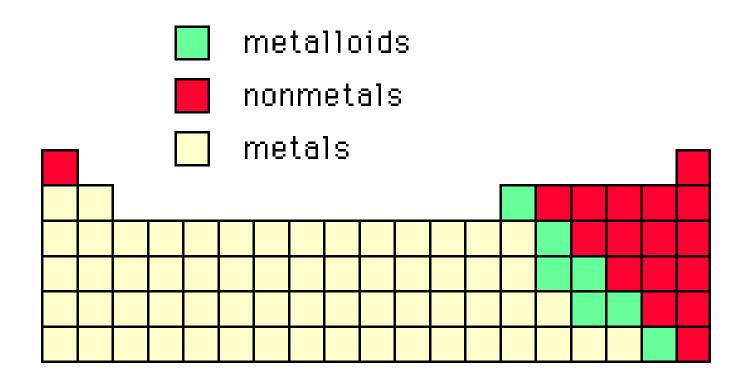
- <u>Groups 3 12</u> on periodic table
- Important for living organisms (i.e. as minerals)
- <u>examples</u>: <u>iron, zinc, manganese</u>



Inner Transition Metals!!

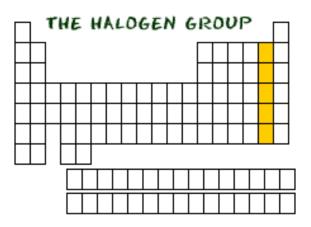

Lanthanides

- Part of the "inner transition metals"
- Soft silvery metals
- elements # 57 70
- examples: cerium, europium, ytterbium

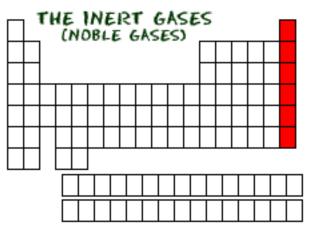


Actinides

- <u>Radioactive elements</u>
- Part of the "inner transition metals"
- elements # 89 102
- examples: uranium, plutonium, berkelium



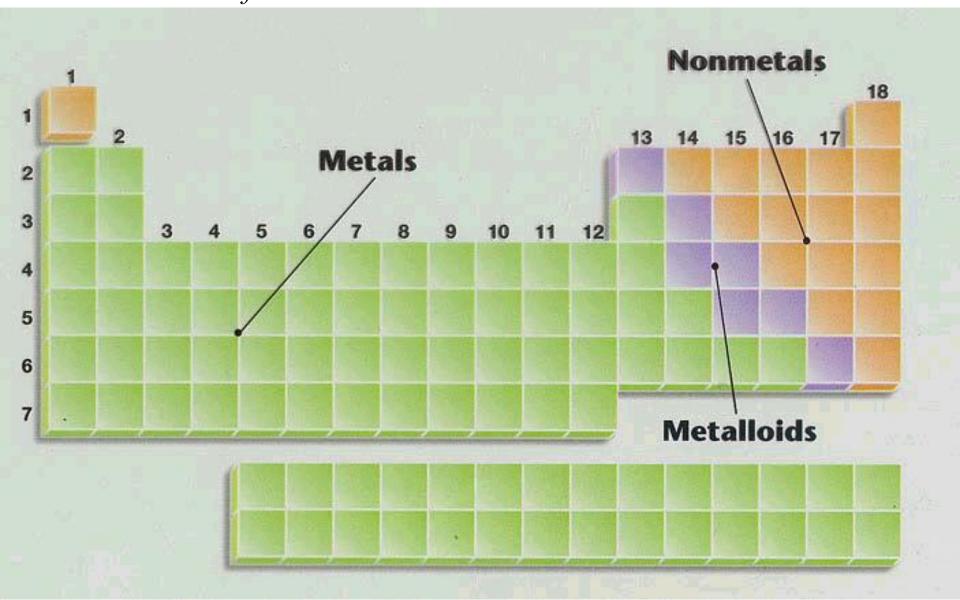
THE NONMETALS!!


Halogens

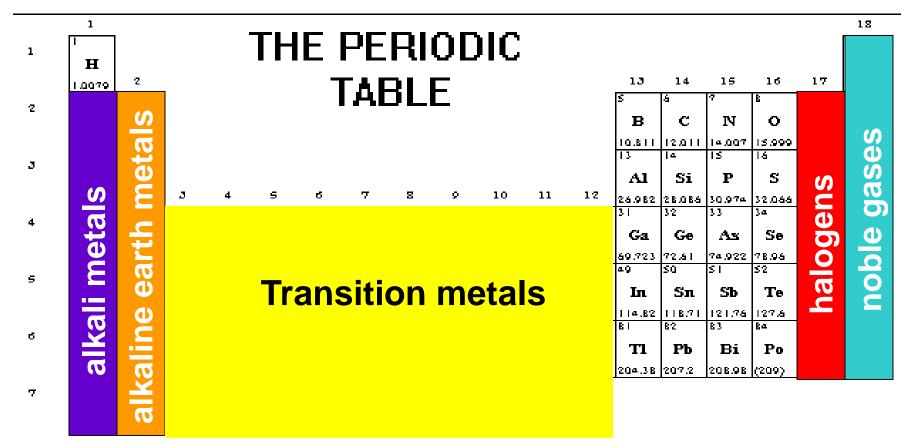
- Group 17 on periodic table
- "Salt former" combines with groups 1 and 2 to form salts (ionic bonds)
- <u>examples</u>: <u>fluorine</u>, <u>bromine</u>, <u>iodine</u>

Noble Gases

- Group 18 on periodic table
- Relatively *inert*, or *nonreactive*
- Gases at room temperature
- examples: helium, argon, radon



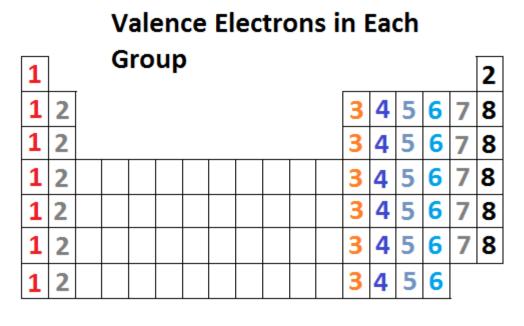
1	1 H				ТΗ	E	PE	RI	OD	IC								18 2 He
	1.0079	2	1				ΓAF	21					13	14	15	16		4.0026 10
2	Li	а Ве											B	°C	N	^B O	° F	Ne
																_		
	6.941	9.0122 12											10.811	12.011 14	14.007 15	15.999 16	18.998	20.18 18
3	Na												AI	Si	P	S	Cl	
	1	Mg	з	4	s	6	7	8	9	10	11	12			_	_		Ar
	22.99	24.305 20	_	-	-	-	-	م 26	-		29	12	26.982 31	28.086 32	30,974 33	32.066]a	15,453 15	
4	l' v	20	21	22	23	2a	25	28	2.4	28	20	lsu –	31	32		ja	35	36
	К	Са	Sc	Ti	\mathbf{v}	\mathbf{Cr}	Mn	Fe	Co	Ni	Сц	Zn	Ga	Ge	As	Se	Br	Kr
	30.008	40.07B	aa <u>9</u> 55	a7.88	50.942	51.996	5a.938	55.Ba7	SB.933	SB.693	61546	6S.39	69.723	72.61	70.922	78.96	70.00a	B3.B
5	37	3 B	30	4Q	a	a2	هع	aa	as	<u>a</u> 6	a7	a B	a9	SQ	SI	52	53	Sa
-	Rb	Sr	Y	Zr	Nb	Mo	Τc	Ru	Rh	Pd	Ag	Cđ	In	Sπ	Sb	Те	Ι	Xe
	85.46B	87.62	BB.006	01.224	02.005	05.Qa	(07.01)	101.07	102.91	106.42	107.87	112.41	11a.82	118.71	121.76	127.6	126.0	131.20
đ	55	58	57	72	73	7a	75	76	77	78	79	BO	BI	82	83	Ba	65	8-6
·	Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ТІ	Pb	Bi	Po	At	Rл
	132.01	137.33	138.01	178,40	180.05	183.84	186.21	100.23	102.22	105.0B	106.07	200.50	20a.3B	207.2	20 B.O B	(209)	(210)	(222)
7	87	8 B	BQ	104	105	106	107	IGB	109	110	111							
•	Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt	Unn	Unu							
	(223)	(226)	(227)	(261.1)	(262.1)	(263.1)	(262.1)	(265.1)	(266.1)	(268)	(269)							

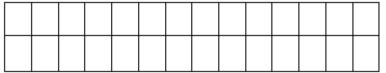

Activity: use a black and white copy of the periodic table.

	SB	59	60	61	62	63	5a	6S	6 6	67	6B	5 9	70	71
Lonthonide Seriex	Се	Pr	Nd	Pm	Sm	Eu	Gđ	ТЬ	Dy	Ho	Er	Tm	УЪ	Lu
	140.12	140.91	aa_2a	(144.9)	150.36	151.97	157.25	158.93	1625	164.93	167.26	168.93	173.04	174.97
	90	91	92	93	Qa	95	96	07	98	00	100	101	102	103
Actinide Seriez	Th	Ра	U	Np	Рц	Am	Ст	Bk	Cf	Es	Fm	Md	No	Lr
	232.04	231.04	238.03	(237)	(244.1)	(243.1)	(247.1)	(247.1)	(251.1)	(252.1)	(257.1)	(258.1)	(259.1)	(262.1)

On one side, color and label the metals, nonmetals, and metalloids. Another name for "metalloid" is "semi-metal".

Color and label the groups/families of elements on the other side of your paper. Remember to create a legend.

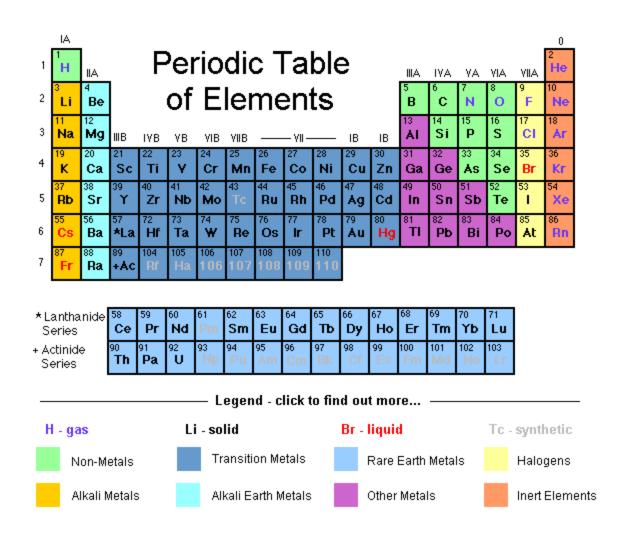




Chemical Properties & Families

- Chemical properties of elements are based on their "VALENCE ELECTRONS"
- Families are groups of elements that have similar VALENCE ELECTRONS
- VALENCE ELECTRONS = <u>outermost</u> <u>electrons in an atom</u>

VALENCE ELECTRONS:


VALENCE ELECTRONS:

IA	IIA	IIIA	IVA	VA	VIA	VIIA	VIIIA
Li	·Be·	$\cdot \dot{\mathbf{B}} \cdot$	٠Ċ٠	: Ņ·	:Ġ:	:È:	:Ne:

In general, the number of valence electrons of a representative element is equal to the group number

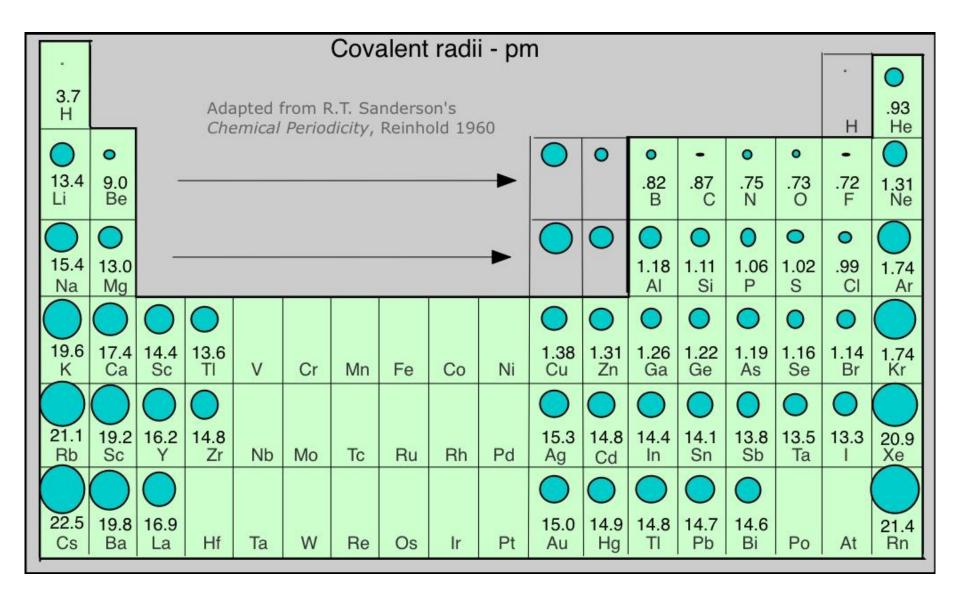
NOTES: 6.3 – Periodic Trends

RECALL...

- <u>Periodicity:</u> regular variations (or patterns) of properties with increasing atomic weight; both chemical and physical properties vary in a periodic (repeating pattern).
- Group: vertical column of elements ("family")
- **Period:** horizontal row of elements

PERIODIC PROPERTIES:

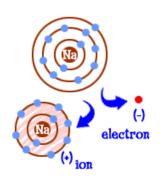
- Atomic radius
- Ionization energy
- Ionic size / radius
- Electronegativity


- <u>GROUP TREND</u>: increases as you move down a group
- WHY???

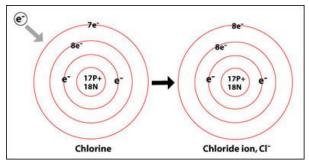
-<u>electrons are added to higher energy levels</u> (farther away from the nucleus).

- **PERIODIC TREND**: decreases as you move L to R across a period
- WHY???

-As the # of protons in the nucleus increases, the positive charge increases and as a result, the <u>"pull" on the electrons increases.</u>



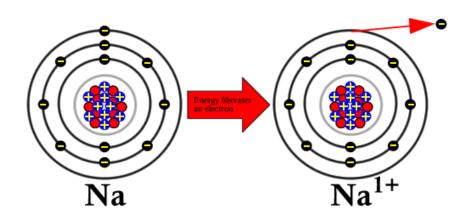
- ION: an atom or group or atoms that has a positive or negative charge
- recall...an atom is electrically neutral because it has equal # of protons (+) & # of electrons (-)
- positive & negative ions form when electrons are transferred between atoms!


- atoms of METALS tend to form
 <u>positive ions</u> by <u>losing 1 or more e</u>from their valence (outermost) shell
- an ion with a positive charge is called a <u>CATION</u>.
- example: <u>SODIUM (Na → Na+)</u>

- atoms of NONMETALS tend to form <u>negative ions</u> by <u>gaining 1 or more e</u>-(& thus filling their outermost energy level)
- an ion with a negative charge is called an <u>ANION</u>.
- example:

CHLORINE (CI → CI⁻)

IONIC RADIUS:

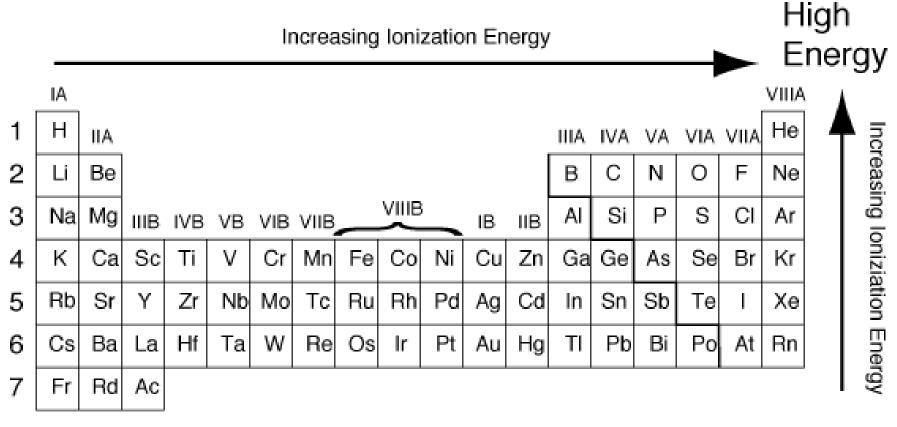

- ANIONS (negative ions) have full valence shells: they are <u>LARGER</u> than their neutral ATOM.
- CATIONS (positive ions) have empty valence shells: they are <u>SMALLER</u> than their neutral ATOM.
- BUT, the size of one ion compared to the next is the same pattern as ATOMIC RADIUS.

Ions are colored red and blue; parent atoms brown. Radii are in picometers.

- Definition: <u>energy required to remove</u> <u>outer electrons</u>
 - → results in the formation of a <u>positive</u> ion!

GROUP TREND: decreases as you move down a group

• WHY???


-<u>Electrons are in higher energy levels</u> as you move down a group; they are farther away from the positive "pull" of the nucleus and therefore <u>easier to remove</u>.

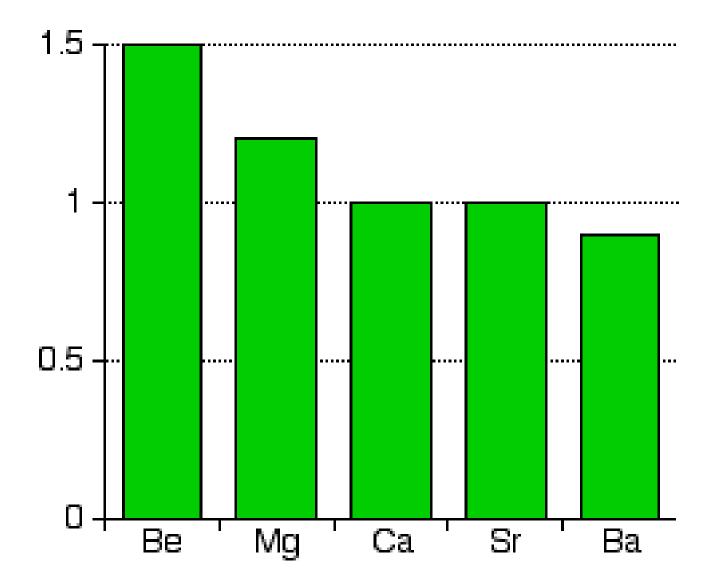
PERIODIC TREND: increases as you move from L to R across a period

• WHY???

-The increasing charge in the nucleus as you move across a period exerts greater "pull" on the electrons; it requires <u>more</u> <u>energy to remove an electron</u>.

Low Energy

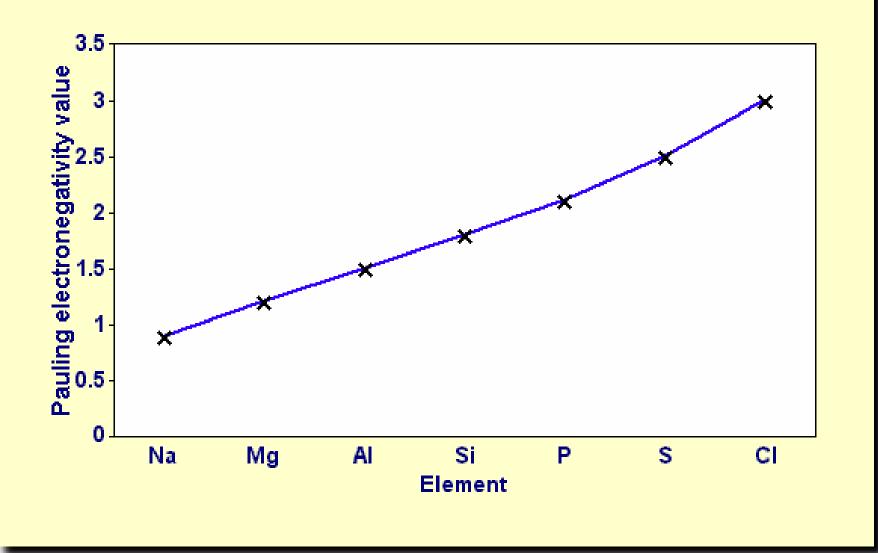
 Definition: the tendency of an atom to <u>attract electrons of another atom</u>


ELECTRONEGATIVITY:

- <u>GROUP TREND</u>: <u>decreases as you move</u> <u>down a group</u>
- WHY???

-higher energy levels means the <u>electrons</u> are farther away from the nucleus;

-greater distance = <u>decreased attraction</u>

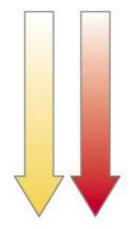

Electronegativity of the Group 2 elements

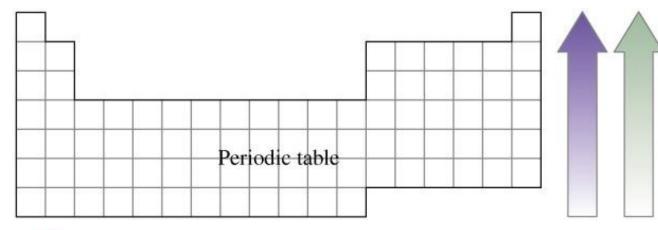
- PERIODIC TREND: increases as you move across a period (noble gases excluded!)
- WHY???
 - -nuclear charge is increasing;
 - -atomic radius is decreasing

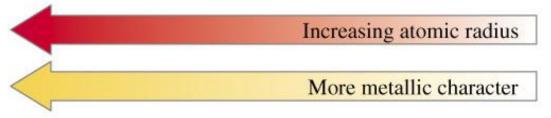
Electronegativity values of Period 3 elements

ELECTRONEGATIVITY TREND

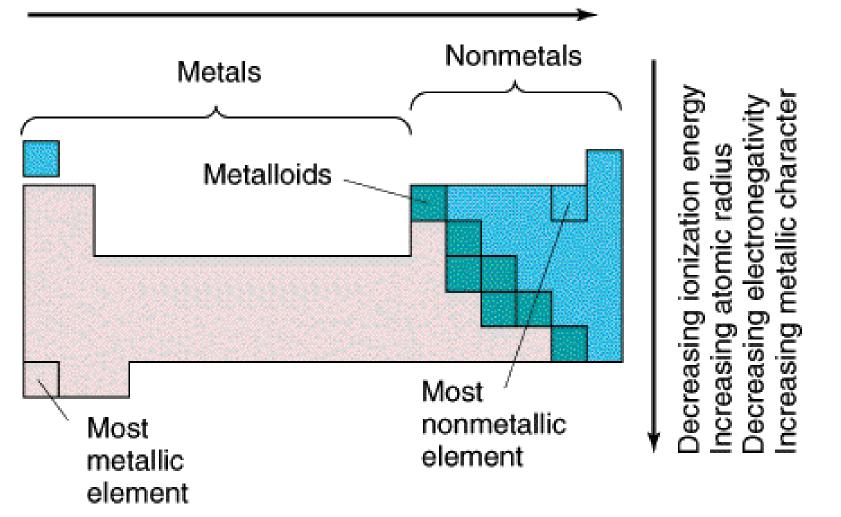
- Most electronegative element:
 <u>FLUORINE (4.0)</u>
- Least electronegative element:
 <u>CESIUM (0.7)</u>


**see table 6.2 on page 181 for all values!


Summing Up Periodic Trends


More nonmetallic character

More negative electron affinity


Increasing ionization energy

Increasing ionization energy Decreasing atomic radius Increasing nonmetallic character and electronegativity Decreasing metallic character

