In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Calculator (optional)
- Ruler
- Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories— infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th></th>
<th>1900 DEATHS PER 100,000</th>
<th></th>
<th>Today DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease **

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Calculator (optional)
- Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories— infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Calculator (optional)

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death-accidents and suicides-are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories-infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>(I)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
<table>
<thead>
<tr>
<th>Colored pencils</th>
<th>Compass</th>
<th>Protractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculator (optional)</td>
<td>Ruler</td>
<td></td>
</tr>
</tbody>
</table>

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times \frac{360^\circ}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{r}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>1900 DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>Today DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Calculator (optional)
Compass
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”
4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{\text{1,100 deaths total}} \times \frac{360\degree}{360\degree} = \text{number of degrees for infectious diseases}
\]
5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice}}{360\degree} \times 100 = \%\%
\]
6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** "I" indicates an infectious disease. "NI" indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Protractor
- Calculator (optional)

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories— infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = \% \quad ?
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler
Calculator (optional)
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>(I)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils Compass Protractor
Calculator (optional) Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infected diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 = \frac{?}{360^\circ}
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td></td>
<td>CAUSE OF DEATH</td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?
2. Why do we use two different types of graph for the same data set?
3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?
4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?
5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.
6. Why do you think the number of deaths, in general, have decreased since the 1900s?
7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death - accidents and suicides - are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories - infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td>DEATHS PER 100,000</td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infected diseases, noninfected diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause of Death</td>
<td></td>
<td>Cause of Death</td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times \frac{x}{360^\circ} = \theta \%
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice}}{360^\circ} \times 100 = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler
Calculator (optional)
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death-accidents and suicides-are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories-infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times \frac{360^\circ}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = \%\%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th></th>
<th>1900 DEATHS PER 100,000</th>
<th>Today DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>1900 DEATHS PER 100,000</th>
<th>Today DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils Compass Protractor
Calculator (optional) Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td></td>
<td>CAUSE OF DEATH</td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler
Calculator (optional)

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infected diseases, noninfected diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 \times \frac{? \%}{360^\circ}
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude
1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials

Colored pencils
Compass
Protractor
Calculator (optional)
Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infected diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{\text{x}}{360°}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360°} = \text{?} \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times \frac{360}{\text{degrees}}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td></td>
<td>TOTAL</td>
<td>710</td>
<td></td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Calculator (optional)
Compass
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories— infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^{\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td>DEATHS PER</td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Calculator (optional)
Compass
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times \frac{x}{360°}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice}}{360°} \times 100 = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
<td></td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils Compass Protractor
Calculator (optional) Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infected diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice}}{360^\circ} \times 100 = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th></th>
<th>DEATHS PER 100,000</th>
<th></th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** "I" indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Calculator (optional)
Compass
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{\text{1,100 deaths total}} = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>(I)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infected diseases, noninfected diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 = \% \times \frac{？}{360^\circ}
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** "I" indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Calculator (optional)
- Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360^\circ = \text{slice size (degrees)}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td>DEATHS PER 100,000</td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td></td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Tuberculosis (I)</td>
<td>185</td>
<td></td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Diarrhea (I)</td>
<td>140</td>
<td></td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Heart Disease (NI)</td>
<td>130</td>
<td></td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Stroke (NI)</td>
<td>110</td>
<td></td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td></td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Accidents</td>
<td>75</td>
<td></td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Cancer (NI)</td>
<td>65</td>
<td></td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Senility (NI)</td>
<td>55</td>
<td></td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Diphtheria (I)</td>
<td>40</td>
<td></td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** "I" indicates an infectious disease. "NI" indicates a noninfectious disease.**

Analyse and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Calculator (optional)
Compass
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infected diseases, noninfected diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td></td>
<td>CAUSE OF DEATH</td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = \text{? %}
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Calculator (optional)
Compass
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times \frac{100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th></th>
<th>1900 DEATHS PER 100,000</th>
<th></th>
<th>Today DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils Compass Protractor
Calculator (optional) Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death - accidents and suicides - are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories - infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{\text{1,100 deaths total}} \times \frac{360^\circ}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
</tr>
<tr>
<td></td>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
</tr>
<tr>
<td></td>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
</tr>
<tr>
<td></td>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
</tr>
<tr>
<td></td>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
</tr>
<tr>
<td></td>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
</tr>
<tr>
<td></td>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
</tr>
<tr>
<td></td>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
</tr>
<tr>
<td></td>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
</tr>
<tr>
<td></td>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils Compass Protractor
Calculator (optional) Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death-accidents and suicides-are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories-infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360^\circ = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils Compass Protractor
Calculator (optional) Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times \frac{360^\circ}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th></th>
<th>1900</th>
<th></th>
<th>Today</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td>DEATHS PER</td>
<td>CAUSE OF DEATH</td>
<td>DEATHS PER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td></td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
<td></td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler
Protractor
Calculator (optional)

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyse and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Calculator (optional)
Compass
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of degrees in a slice} = \frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360°
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 \div 360° = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Calculator (optional)
- Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infected diseases, noninfected diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

$$\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ$$

5. Calculate the percentage represented by each category using this formula:

$$\text{Number of degrees in a slice} \times 100 = ? \%$$

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{r}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 = \% \times \frac{360^\circ}{360^\circ}
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td></td>
<td>Today</td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Calculator (optional)

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

$$\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360^\circ$$

5. Calculate the percentage represented by each category using this formula:

$$\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%$$

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?
2. Why do we use two different types of graph for the same data set?
3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?
4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?
5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.
6. Why do you think the number of deaths, in general, have decreased since the 1900s?
7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler
Calculator (optional)
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories— infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph.

To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice}}{360^\circ} \times 100 = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td></td>
<td>CAUSE OF DEATH</td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Calculator (optional)
- Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times \frac{360^\circ}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td></td>
<td>CAUSE OF DEATH</td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = \text{? %}
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease **

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Calculator (optional)
Compass
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = \% \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>Cause of Death</th>
<th>1900 DEATHS PER 100,000</th>
<th>Cause of Death</th>
<th>Today DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Calculator (optional)
Compass
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death-accidents and suicides-are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories-infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{\text{x}}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td>DEATHS PER 100,000</td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories— infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Calculator (optional)
Compass
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death-accidents and suicides-are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories-infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Calculator (optional)

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Protractor
Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th></th>
<th>1900 DEATHS PER 100,000</th>
<th>Today CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils Compass Protractor
Calculator (optional) Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Calculator (optional)
- Ruler
- Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{r}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Protractor
- Calculator (optional)

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{\text{Number of deaths}}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 \times \frac{? \%}{360^\circ}
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils Compass Protractor
Calculator (optional) Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

 \[
 \text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
 \]

5. Calculate the percentage represented by each category using this formula:

 \[
 \frac{\text{Number of degrees in a slice}}{360^\circ} \times 100 = ? \%
 \]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td>DEATHS PER 100,000</td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
</tr>
</tbody>
</table>

** "I" indicates an infectious disease. "NI" indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Calculator (optional)
- Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 = \frac{\text{Number of degrees in a slice}}{360^\circ} \times 100 = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td>Heart Disease (NI)</td>
<td>DEATHS PER 100,000</td>
<td>Cancer (NI)</td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils Compass Protractor
Calculator (optional) Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infected diseases, noninfected diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 = \frac{? \%}{360^\circ}
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils Compass Protractor
Calculator (optional) Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories— infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice}}{360^\circ} \times 100 = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th></th>
<th>Today</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td>DEATHS PER 100,000</td>
<td>CAUSE OF DEATH</td>
<td>DEATHS PER 100,000</td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Protractor
- Calculator (optional)

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories— infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{r}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 = \frac{?}{360^\circ} \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td></td>
<td>Today</td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Calculator (optional)
- Ruler
- Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”
4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
<td></td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example, use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{r}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>(I)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease **

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Calculator (optional)
- Ruler
- Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^{\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice}}{360^{\circ}} \times 100 = \% \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease **

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Calculator (optional)
- Ruler
- Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total} \times \frac{360^\circ}{360^\circ}}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = \%\
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of degrees in a slice} = \frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of deaths from infectious diseases} \times 100 = \% \quad \text{of the total deaths}
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”
4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100} \times 360°
\]
5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 = \frac{? %}{360°}
\]
6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSE OF DEATH</td>
<td></td>
<td>CAUSE OF DEATH</td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
<table>
<thead>
<tr>
<th>Colored pencils</th>
<th>Compass</th>
<th>Protractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculator (optional)</td>
<td>Ruler</td>
<td></td>
</tr>
</tbody>
</table>

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times \frac{360^\circ}{360^\circ} = x
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>Cause of Death</th>
<th>Deaths per 100,000</th>
<th>Cause of Death</th>
<th>Deaths per 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>1100</td>
<td>Total</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils Compass Protractor
Calculator (optional) Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = \% \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th></th>
<th>1900</th>
<th></th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEATHS PER 100,000</td>
<td>DEATHS PER 100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAUSE OF DEATH</td>
<td>CAUSE OF DEATH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza</td>
<td>Heart Disease (NI)</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>(I)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>Cancer (NI)</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>Stroke (NI)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>Lung Disease (NI)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>Accidents</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>Pneumonia (I)</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Accidents</td>
<td>Diabetes (NI)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>HIV infection (I)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>Suicide</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>Liver Disease (NI)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler
Calculator (optional)
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”
4. Start by grouping the data from 1900 into the three categories—infec-tious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360°
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360°} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Calculator (optional)
- Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{r}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Calculator (optional)
Compass
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{r}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 = \frac{?}{360^\circ} \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th></th>
<th>1900 DEATHS PER 100,000</th>
<th>Today DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Ruler
- Protractor
- Calculator (optional)

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>Cause of Death</th>
<th>Deaths per 100,000</th>
<th>Cause of Death</th>
<th>Deaths per 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>~1900</td>
<td>~Today</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>(I)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** "I" indicates an infectious disease. "NI" indicates a noninfectious disease**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils Compass Protractor
Calculator (optional) Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of degrees in a slice} = \frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 = \frac{?}{360^\circ} \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>(I)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Ruler

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{\text{Number of deaths from infectious diseases}}{\text{1,100 deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 = \% \text{ %}
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>Today</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
<td></td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death-accidents and suicides-are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories-infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} \times 360°
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360°} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{r}{1,100 \text{ deaths total}} \times 360^\circ
\]

5. Calculate the percentage represented by each category using this formula:

\[
\text{Number of degrees in a slice} \times 100 = ? \% \quad \frac{360^\circ}{360^\circ}
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>1900 CAUSE OF DEATH</th>
<th>1900 DEATHS PER 100,000</th>
<th>Today CAUSE OF DEATH</th>
<th>Today DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Compass
Calculator (optional)
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infected diseases, noninfected diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = \%\%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
Colored pencils
Calculator (optional)
Compass
Ruler
Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\text{Number of deaths from infectious diseases} = \frac{x}{1,100 \text{ deaths total}}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360°} = ? \%
\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th></th>
<th>DEATHS PER 100,000</th>
<th></th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td></td>
<td>Today</td>
<td></td>
</tr>
<tr>
<td>CAUSE OF DEATH</td>
<td></td>
<td>CAUSE OF DEATH</td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

“I” indicates an infectious disease. “NI” indicates a noninfectious disease.

Analyze and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?
Causes of Death, Then and Now

In this lab you will compare data on the leading causes of death in 1900 and today.

Problem
How do the leading causes of death today compare with those of a hundred years ago?

Materials
- Colored pencils
- Compass
- Calculator (optional)
- Ruler
- Protractor

Procedure
1. The data table on the next page shows the leading causes of death in the United States during two different years. Examine the data and note that two causes of death—accidents and suicides—are not diseases. The other causes are labeled either “I,” indicating an infectious disease, or “NI,” indicating a noninfectious disease.

Part 1 Comparing Specific Causes of Death
2. Look at the following causes of death in the table: (a) pneumonia and influenza, (b) heart disease, (c) accidents, and (d) cancer. Construct a bar graph that compares the numbers of deaths from each of those causes in the 1900’s and today. Label the horizontal axis “Causes of Death.” Label the vertical axis “Deaths per 100,000 People.” Draw two bars side by side for each cause of death. Use a key to show which bars refer to 1900 and which refer to today. Give the graph a title and use appropriate units for the axes.

Part 2 Comparing Infectious and Noninfectious Causes of Death
3. In this part of the lab, you will make two pie graphs showing three categories; infectious diseases, noninfectious diseases, and “other.”

4. Start by grouping the data from 1900 into the three categories—infectious diseases, noninfectious diseases, and other causes. Find the total number of deaths for each category. Then find the size of the “pie slice” (the number of degrees) for each category, and construct your circle graph. Remember to give the graph a title and to use the percentages on the graph. To find the size of the infectious disease slice for 1900, for example use the following formula:

\[
\frac{\text{Number of deaths from infectious diseases}}{1,100 \text{ deaths total}} = \frac{x}{360^\circ}
\]

5. Calculate the percentage represented by each category using this formula:

\[
\frac{\text{Number of degrees in a slice} \times 100}{360^\circ} = \%\]

6. Repeat steps 4 and 5 using the data from today to make the second circle graph. What part of the formula in step 4 do you need to change?
Table 1: Ten Leading Causes of Death in the United States, 1900 and Today

<table>
<thead>
<tr>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
<th>CAUSE OF DEATH</th>
<th>DEATHS PER 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia, influenza (I)*</td>
<td>215</td>
<td>Heart Disease (NI)</td>
<td>281</td>
</tr>
<tr>
<td>Tuberculosis (I)</td>
<td>185</td>
<td>Cancer (NI)</td>
<td>205</td>
</tr>
<tr>
<td>Diarrhea (I)</td>
<td>140</td>
<td>Stroke (NI)</td>
<td>59</td>
</tr>
<tr>
<td>Heart Disease (NI)</td>
<td>130</td>
<td>Lung Disease (NI)</td>
<td>39</td>
</tr>
<tr>
<td>Stroke (NI)</td>
<td>110</td>
<td>Accidents</td>
<td>35</td>
</tr>
<tr>
<td>Kidney Disease (NI)</td>
<td>85</td>
<td>Pneumonia (I)</td>
<td>31</td>
</tr>
<tr>
<td>Accidents</td>
<td>75</td>
<td>Diabetes (NI)</td>
<td>22</td>
</tr>
<tr>
<td>Cancer (NI)</td>
<td>65</td>
<td>HIV infection (I)</td>
<td>16</td>
</tr>
<tr>
<td>Senility (NI)</td>
<td>55</td>
<td>Suicide</td>
<td>12</td>
</tr>
<tr>
<td>Diphtheria (I)</td>
<td>40</td>
<td>Liver Disease (NI)</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1100</td>
<td>TOTAL</td>
<td>710</td>
</tr>
</tbody>
</table>

** “I” indicates an infectious disease. “NI” indicates a noninfectious disease.**

Analyse and Conclude

1. What kind of information did you learn just from examining the data table in Part 1?

2. Why do we use two different types of graph for the same data set?

3. According to your bar graph, which cause of death showed the greatest increase between 1900 and today? Which cause of death showed the greatest decrease?

4. In your circle graphs, which category decreased the most from 1900 to today? Which increased the most?

5. Suggest an explanation for the change in number of deaths due to infectious diseases from 1900 to today.

6. Why do you think the number of deaths, in general, have decreased since the 1900s?

7. How do graphs help you identify patterns and other information in data that you might otherwise overlook?